Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Year range
1.
Radiol Cardiothorac Imaging ; 2(4): e200322, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1156000

ABSTRACT

PURPOSE: To compare prediction of disease outcome, severity, and patient triage in coronavirus disease 2019 (COVID-19) pneumonia with whole lung radiomics, radiologists' interpretation, and clinical variables. MATERIALS AND METHODS: This institutional review board-approved retrospective study included 315 adult patients (mean age, 56 years [range, 21-100 years], 190 men, 125 women) with COVID-19 pneumonia who underwent noncontrast chest CT. All patients (inpatients, n = 210; outpatients, n = 105) were followed-up for at least 2 weeks to record disease outcome. Clinical variables, such as presenting symptoms, laboratory data, peripheral oxygen saturation, and comorbid diseases, were recorded. Two radiologists assessed each CT in consensus and graded the extent of pulmonary involvement (by percentage of involved lobe) and type of opacities within each lobe. Radiomics were obtained for the entire lung, and multiple logistic regression analyses with areas under the curve (AUCs) as outputs were performed. RESULTS: Most patients (276/315, 88%) recovered from COVID-19 pneumonia; 36/315 patients (11%) died, and 3/315 patients (1%) remained admitted in the hospital. Radiomics differentiated chest CT in outpatient versus inpatient with an AUC of 0.84 (P < .005), while radiologists' interpretations of disease extent and opacity type had an AUC of 0.69 (P < .0001). Whole lung radiomics were superior to the radiologists' interpretation for predicting patient outcome in terms of intensive care unit (ICU) admission (AUC: 0.75 vs 0.68) and death (AUC: 0.81 vs 0.68) (P < .002). The addition of clinical variables to radiomics improved the AUC to 0.84 for predicting ICU admission. CONCLUSION: Radiomics from noncontrast chest CT were superior to radiologists' assessment of extent and type of pulmonary opacities in predicting COVID-19 pneumonia outcome, disease severity, and patient triage.© RSNA, 2020.

2.
Eur J Radiol ; 139: 109583, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1074725

ABSTRACT

PURPOSE: As of August 30th, there were in total 25.1 million confirmed cases and 845 thousand deaths caused by coronavirus disease of 2019 (COVID-19) worldwide. With overwhelming demands on medical resources, patient stratification based on their risks is essential. In this multi-center study, we built prognosis models to predict severity outcomes, combining patients' electronic health records (EHR), which included vital signs and laboratory data, with deep learning- and CT-based severity prediction. METHOD: We first developed a CT segmentation network using datasets from multiple institutions worldwide. Two biomarkers were extracted from the CT images: total opacity ratio (TOR) and consolidation ratio (CR). After obtaining TOR and CR, further prognosis analysis was conducted on datasets from INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3. For each data cohort, generalized linear model (GLM) was applied for prognosis prediction. RESULTS: For the deep learning model, the correlation coefficient of the network prediction and manual segmentation was 0.755, 0.919, and 0.824 for the three cohorts, respectively. The AUC (95 % CI) of the final prognosis models was 0.85(0.77,0.92), 0.93(0.87,0.98), and 0.86(0.75,0.94) for INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3 cohorts, respectively. Either TOR or CR exist in all three final prognosis models. Age, white blood cell (WBC), and platelet (PLT) were chosen predictors in two cohorts. Oxygen saturation (SpO2) was a chosen predictor in one cohort. CONCLUSION: The developed deep learning method can segment lung infection regions. Prognosis results indicated that age, SpO2, CT biomarkers, PLT, and WBC were the most important prognostic predictors of COVID-19 in our prognosis model.


Subject(s)
COVID-19 , Deep Learning , Electronic Health Records , Humans , Lung , Prognosis , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL